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G A Saunders‡ and F C Lovey§
† Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, Diagonal
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Abstract. To shed further light on the dynamics of the martensitic transformation in shape-
memory alloys, measurements have been made of the effects of hydrostatic pressure on
the velocities of 15 different pure ultrasonic modes propagated at room temperature in a
Cu0.696Zn0.128Al 0.176 single-crystal alloy in its 18R martensitic phase. Although the point
symmetry group of the 18R martensite is monoclinic, the elastic behaviour can be reasonably
described in terms of an orthorhombic structure; the further monoclinicity beyond such an
orthorhombic representation is very small and can be neglected to a first approximation. The
results obtained for the nine independent second-order elastic stiffness tensor componentsCIJ
in the 18R structure and their hydrostatic-pressure derivatives(∂CIJ /∂P )P=0 have been used to
calculate the mode Grüneisen parametersγp(N), which quantify the vibrational anharmonicity
of long-wavelength acoustic phonons. Results are compared with those computed from TOEC
data measured on aβ-phase Cu–Zn–Al single crystal with a similar composition. At room
temperature, about 28 K below the martensitic transition temperature (=323 K), the longitudinal
modeγp(N) have normal, positive values; however, thoseγp(N) associated with some shear
modes have negative values. A pronounced minimum has been found in the Grüneisen parameter
of the shear mode propagated along the [111] direction with [12̄1] polarization vector. It is
concluded that the lattice stability against this particular shear mode decreases as the sample
approaches the martensitic transition.

1. Introduction

Noble-metal-based alloys with a bcc structure (β-phase) can undergo a structural transition
to a close-packed phase by a martensitic transformation (MT), which can be induced either
by change of temperature or application of pressure. This is a first-order, diffusionless,
structural phase transition, which involves a homogeneous shear of the parent bcc phase
[1]. Martensitic transformation is the underlying mechanism responsible for many of the
unusual thermomechanical properties of these alloys including superelasticity, high damping
and the shape-memory effect [2]. Fundamental interest and novel technological applications
of these effects have prompted numerous theoretical and experimental investigations of
materials that undergo MT, including the Cu-based alloys. Here we focus on Cu–Zn–Al, a
typical shape memory alloy.
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When bcc solids approach a martensitic transformation, a number of precursor
phenomena intimately related to the transformation mechanism can occur. These alloys
usually exhibit a low TA2[110] phonon branch, which is accompanied by a low value of
the elastic constantC ′ (=(C11− C12)/2). As the material approaches the transition, both
the TA2 phonons andC ′ soften but not completely: neither phonon frequencies nor elastic
constant reach zero at the transition point [3]. Hence, to understand the dynamical behaviour
associated with such transitions, it is necessary to go beyond the harmonic approximation and
to quantify the vibrational anharmonicity of phonon modes near the martensitic transition
temperature (Ms) [4, 5].

Depending on alloy composition, the martensitic transformation takes the high-
temperature phase into different crystallographic structures based on different stacking
sequences of close-packed planes along thec-axis direction. The usual nomenclature uses
rhombohedral (R) or hexagonal (H) for the close-packed plane stacking, with a number
added which characterizes the number of stacking sequences in the repeat unit. The 18R
martensite structure for the alloy studied here is monoclinic [6]. However, for practical
convenience, a larger unit cell containing 18 close-packed atomic planes (M18R structure)
is used [7]. In the first determination of the elastic stiffnesses of this alloy in terms of
a monoclinic structure it was shown thatC15, C25, C35 andC46 were so small that they
could be considered to be zero. For this reason it is considered adequate to make pressure
dependence measurements of the set of independent elastic stiffness tensor components
which correspond to the orthorhombic structure. The Miller indices and the elastic stiffness
tensor components and their pressure derivatives throughout refer to the orthorhombic M18R
unit cell.

Experimental data which can be used to provide information about the vibrational
anharmonicity are available for a number of Cu-based alloys in the bcc phase. By measuring
the effects of uniaxial stress on the velocity of ultrasonic modes complete sets of third-
order elastic constants (TOECs) have been obtained for several alloys: Cu–Zn–Al [8],
Cu–Al–Ni [9] and Cu–Al–Pd [10]. The hydrostatic pressure derivatives have been also
determined for Cu–Al–Be [11]. Yet, in spite of the considerable effort made in quantifying
the vibrational behaviour on theβ-phase, very few measurements have been performed on
the corresponding martensite phase. Rodrı́guezet al [12] measured the room-temperature
second-order elastic stiffness tensor components (CIJ ) of an 18R martensite Cu–Zn–Al
alloy single crystal. More recently, some of the present authors measured the temperature
dependence of the complete set of elastic stiffness tensor components of the same sample
[13]. The main objective of the present work is to provide detailed information about
the anharmonicity of long-wavelength acoustic modes of the same Cu–Zn–Al alloy sample
studied previously [12, 13] just below its transition temperature to the bcc phase and establish
further knowledge of the transition mechanism. To achieve this aim, the hydrostatic pressure
derivatives (∂CIJ /∂P )P=0 of the second-order elastic constants have been determined
ultrasonically and are used to obtain the Grüneisen parameters of the acoustic modes in
the long-wavelength limit. The anharmonicity of these modes is then compared with those
computed from TOEC data measured on aβ-phase Cu–Zn–Al single crystal with similar
composition [8].

2. Experimental details and techniques

The sample was a martensite Cu–Zn–Al single crystal of composition Cu0.696Zn0.128Al 0.176,
which had been investigated previously by ultrasonic and calorimetric techniques. The alloy
of this composition transforms thermoelastically from theβ-bcc phase to a monoclinic 18R
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martensite structure on cooling below its transition temperatureMs = 323 K. For details
of sample preparation see Rodrı́guez et al [12]. Large single crystals are required for
precision measurements of ultrasonic wave velocities and their pressure dependences. Two
cubic-shaped specimens have been studied here: the first one (9.90×4.15×5.95 mm3) with
faces parallel to the (100), (010) and (001) planes, the second one (3.87×5.05×4.53 mm3)
with two faces parallel to the (32̄0) and (̄12̄8) planes.

Ultrasonic wave transit times were measured using the pulse-echo overlap technique
[14], capable of resolution of velocity changes to 1 part in 105 and particularly well suited
to the determination of pressure-induced changes in velocity.X-cut andY -cut quartz
transducers were used to generate and detect longitudinal and shear 10 MHz ultrasonic
pulses respectively. Dow Resin 276-V9 was chosen as the bonding material between the
specimen and the transducer. Hydrostatic pressures up to 0.15 GPa were applied using a
piston and cylinder apparatus with silicone oil as the pressure transmitting medium. The
pressure was measured using the change in resistance of a precalibrated manganin wire coil
inside the cell. During pressure runs it was important to ensure that measurements were
made at the same controlled temperature (±0.1 ◦C) because the ultrasonic wave velocity is
sensitive to temperature.

Pressure-induced changes in the sample dimensions were taken into account by using
the ‘natural velocity (W )’ technique [15]. For further details of the experimental set-up see
Flower and Saunders [16].

3. Experimental results and discussion

3.1. Hydrostatic pressure derivatives of the elastic stiffness tensor components in the
martensite phase

The 18R martensite structure can be closely approximated as being orthorhombic; this
approach simplifies the description of its elastic properties [12]. To describe the elastic
behaviour of an orthorhombic crystal, nine independent second-order elastic constants are
needed; in Voigt notation [17] and matrix form these are

CIJ =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 . (1)

These elastic stiffness tensor components (CIJ ) in this orthorhombic reference frame have
been determined from the measured velocities of the ultrasonic modes listed in table 1
in which the wave vectorsN corresponding to the directions of propagation and the
components of the polarization vectorsU are given for all measured propagation modes.
Velocities of modes with numbers between V1 and V9 have been examined on the larger
specimen, while the remainder have been measured on the smaller one. To obtain the
complete set of elastic stiffness tensor components (CIJ ) as best fits to the experimental
data measured for the ultrasonic velocities, it was necessary to use a numerical procedure
based on the solution of the wave propagation equations for an orthorhombic symmetry. In
an anisotropic crystal the velocities of propagation of longitudinal and shear waves along
different directions are related to the set of elastic stiffness tensor components (CIJ ) by
the Christoffel equations [18]. The fact that the number of equations was larger than
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Table 1. Experimental results for the ultrasonic velocityV0, pulse-echo overlap frequency
at atmospheric pressurefo, its hydrostatic pressure derivative [∂f/∂P ]P=0 and the pressure
derivative of the elastic stiffnesses [∂(ρV 2)/∂P ]P=0 for ultrasonic waves propagating withN
andU as propagation vector and polarization vector, respectively. Relationships between elastic
constants and propagation velocities are given for a number of modes.

V0 [∂f/∂P ]P=0

Mode N U ρV 2 = CIJ (m s−1) fo (kHz) (kHz kbar−1) [∂(ρV 2)/∂P ]P=0

V1 [001] [001] C33 5533 464.939± 0.152 0.808± 0.040 7.122± 0.400
V2 [001] [010] C44 2653 222.976± 0.007 0.256± 0.010 1.008± 0.048
V3 [001] [100] C55 1862 156.460± 0.005 0.215± 0.005 0.615± 0.017
V4 [010] [010] C22 4579 551.741± 0.134 1.526± 0.056 11.906± 0.323
V5 [010] [001] C44 2836 341.701± 0.017 0.457± 0.010 2.823± 0.036
V6 [010] [100] C66 2241 269.977± 0.015 0.229± 0.003 1.389± 0.008
V7 [100] [100] C11 4816 243.256± 0.035 0.442± 0.008 5.253± 0.116
V8 [100] [010] C66 2519 127.228± 0.002 0.112± 0.003 0.535± 0.023
V9 [100] [001] C55 1867 94.306± 0.002 0.126± 0.003 0.535± 0.017
V10 [32̄0] [21̄0] a 4927 626.929± 0.082 1.304± 0.010 7.308± 0.057
V11 [32̄0] [231] a 2303 297.503± 0.152 0.453± 0.006 1.207± 0.016
V12 [32̄0] [9̄131] a 1653 227.746± 0.037 0.302± 0.034 0.565± 0.065
V13 [1̄2̄8] [9̄131] a 5113 564.380± 0.061 1.198± 0.019 10.294± 0.134
V14 [1̄2̄8] [801] a 2752 303.788± 0.008 0.239± 0.028 1.446± 0.106
V15 [1̄2̄8] [109̄1̄] a 1047 115.591± 0.002 0.310± 0.005 0.525± 0.008

a The data for the modes V10–V15 are obtained from third-order algebraic equations including known SOEC
constants. The resulting equations are extensive.

Table 2. Elastic stiffness constantsCIJ of 18R martensite Cu–Zn–Al in the orthorhombic
approximation at room temperature. The units are GPa.

C11 C22 C33 C44 C55 C66 C12 C13 C23 Ref.

176± 1 158± 8 232± 2 53± 2 26± 1 48± 2 112± 10 37± 10 150± 15 This work
178± 4 152± 12 237± 1 55± 4 27± 1 48± 12 108± 21 41± 32 154± 31 [13]
175± 4 156± 1 235± 4 54± 1 28± 2 48± 1 118± 4 40± 20 150± 30 [12]

the number ofCIJ has allowed us to minimize the intrinsic error associated with the
experimental measurement of the ultrasonic wave velocity. Determination of the complete
set of results required substantial algebraic and numerical manipulation of the expressions
given in table 1. To expedite this task, the scientific softwareMathematicaTM was employed.
Details need not be reported here. The resulting second-order elastic stiffness tensor
componentsCIJ at room temperature are compared with those reported elsewhere in table 2;
the room-temperature density has been taken as 7589 kg m−3 [12]. Since these data sets
were obtained using different experimental approaches, the agreement between them is
reasonable. Table 3 shows the expressions for the elastic compliance constantsSIJ and
the bulk modulus for an orthorhombic crystal as a function of the elastic stiffness tensor
components together with the numerical values corresponding to the samples examined
here.

To study the effects of pressure on the elastic behaviour of the alloy, the pressure
dependence [∂f/∂P ]P=0 of the pulse echo overlap frequencyf was measured for 15
propagation ultrasonic modes at room temperature. The overlap frequency change
increased linearly with increasing pressure. For each measurement, data points were taken
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Table 3. Expressions for the elastic compliance constantsSIJ and the bulk modulus for an
orthorhombic crystal as a function of the SOEC. The values ofSIJ (in units of 10−11N−1m2)
and bulk modulus (in GPa) are given for 18R martensite Cu–Zn–Al at room temperature.

S11 = −C
2
23+C22C33
A

S22 = −C
2
13+C11C33
A

S44 = 1
C44

S12 = C13C23−C12C33
A

S22 = C12C13−C11C23
A

S55 = 1
C55

S13 = −C13C22+C12C23
A

S33 = −C
2
12+C11C22
A

S66 = 1
C66

B = C11C22C33+2C12C13C23−C11C
2
23−C2

12C33−C2
13C22

C11(C22+C33−2C23)+2C12(C13+C23−C33)+2C13(C23−C22)+C22C33−C2
12−C2

13−C2
23

A = C11C22C33+ 2C12C13C23− C11C
2
23− C2

12C33− C2
13C22

S11 S22 S33 S44 S55 S66 S12 S13 S23 B Ref.

2.33 6.49 2.51 1.89 3.85 2.08−3.36 1.80 −3.66 112 This work
2.30 7.57 2.88 1.82 3.70 2.08−3.60 1.94 −4.30 120 [13]
3.80 10.62 3.59 1.85 3.57 2.08−5.84 3.08 −5.78 108 [12]

during both increasing and decreasing pressure runs; there was no observable hysteresis
effect under pressure cycling. Values given in table 1 for [∂f/∂P ]P=0 correspond to
averaged data for several runs, and the error is the maximum deviation from the mean
value.

The pressure derivatives ofρV 2 to the basic frequency data and coefficients at zero
pressure are related by [19][

∂(ρV 2)

∂P

]
P=0

= ρV 2
0

[
2(∂f/∂P )P=0

f0
+ 1

B0
− 2NkNmS

T
kmii

]
. (2)

Hereρ, B0 andV0 are the density, bulk modulus and ultrasonic mode velocity respectively
at ambient conditions. In additionNi are the components of the propagation vector and
STijkl the components of the isothermal elastic compliance tensor. The last two terms in
the bracket on the right-hand side of equation (2) correspond to the effects of changes of
density and path length, respectively. In this work the isothermalSTijkl (=SSijkl+αijαklT /Cp)
have been replaced by the adiabatic elastic compliances because there have been as yet no
measurements of the volume thermal expansion tensorαij . However, the error introduced
by assumingSTijkl ≈ SSijkl is negligible compared with other experimental errors. The effect
of hydrostatic pressure on the ultrasonic wave velocities is shown in figure 1 for each of
the modes with propagation and polarization directions listed in table 1. The measured
relative change in the velocity of the ultrasonic modes, computed by fitting a straight line
to the measured dependence, is also given in table 1. Numerical treatment of the data for
[∂(ρV 2)/∂P ]P=0 provided the complete set of the pressure derivatives (∂CIJ /∂P )P=0 for all
the elastic stiffness tensor components. For every acoustic mode examined, ultrasonic wave
velocity increases with pressure; this would be expected for normal anharmonic behaviour of
the long-wavelength acoustic modes. Hence the pressure derivatives of the elastic stiffness
constants are positive (table 4).

To calculate the mode Grüneisen parameters, it is helpful to know the values
of the pressure derivatives of the second-order thermodynamic elastic constantsBIJ ,
which are also called thermodynamic coefficients. The values of∂CIJ /∂P , that
have actually been obtained (table 4), correspond to the pressure derivatives of the
effective stiffness tensor components; these differ from the thermodynamic coefficients,
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Figure 1. The relative change with hydrostatic pressure in natural velocity of ultrasonic waves
propagated in Cu–Zn–Al 18R martensite at 293 K. Curves are labelled according to table 1. For
each propagation direction: (a)N = [001]; (b) N = [010]; (c) N = [100]; (d) N = [32̄0];
(e) N = [1̄2̄8] we obtain longitudinal (circle), fast shear (square) and slow shear modes
(triangle). Full and empty symbols corresponds to increasing and decreasing pressure runs
respectively, and solid lines are linear fits to the data.

Table 4. The effective pressure derivatives(∂CIJ /∂P )P=0 and the pressure derivativesBIJ of
the thermodynamic SOEC of 18R martensite Cu–Zn–Al at room temperature.

(∂CIJ /∂P )P=0 BIJ

∂C11/∂P 5.25± 0.12 B11 10.1
∂C22/∂P 11.9± 0.4 B22 8.15
∂C33/∂P 7.12± 0.40 B33 12.1
∂C44/∂P 1.01± 0.05 B44 1.66
∂C55/∂P 0.57± 0.04 B55 2.08
∂C66/∂P 0.53± 0.03 B66 1.33
∂C12/∂P 9.04± 0.91 B12 7.58
∂C13/∂P 11.5± 1.4 B13 11.3
∂C23/∂P 16.7± 6.1 B23 14.8

which are defined in terms of the second derivatives with respect to strain of
the internal energy, when the strain is referred to the natural ‘zero’-pressure state
[19]. In fact, at atmospheric pressure the effective elastic stiffness tensor components
approach quite closely the values of the thermodynamic ones; in some cases the
pressure derivatives of the two sets of coefficients can differ considerably from each
other. For an orthorhombic crystal relations between∂CIJ /∂P and BIJ are given by
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[20]

B11 = ∂C11

∂P
+ 1− (S2+ S3− 3S1)C11

B33 = ∂C33

∂P
+ 1− (S1+ S2− 3S3)C33

B12 = ∂C12

∂P
− 1− (S3− S1− S2)C12

B44 = ∂C44

∂P
+ 1− (S1− S2− S3)C44

B13 = ∂C13

∂P
− 1− (S2− S1− S3)C13

B55 = ∂C55

∂P
+ 1− (S2− S1− S3)C55

B22 = ∂C22

∂P
+ 1− (S3+ S1− 3S2)C22

B66 = ∂C66

∂P
+ 1− (S3− S1− S2)C66

B23 = ∂C23

∂P
− 1− (S1− S2− S3)C23

(3)

whereS1 = S11+ S12+ S13, S2 = S12+ S22+ S23 andS3 = S13+ S23+ S33; the numerical
values obtained are tabulated in table 4.

3.2. Acoustic mode vibrational anharmonicity and Gr¨uneisen parameters

The pressure variations of the elastic stiffness tensor components, which have been
measured, determine the lowest-order term for the acoustic-mode anharmonicity, and hence
the non-linearity of interatomic forces with respect to atomic displacements. It is customary
to discuss the anharmonic properties in terms of generalized Grüneisen parametersγp(N ).
These parameters quantify to first order the volume or strain dependence of the lattice
vibrational frequenciesωp(q) of the acoustic modes at the Brillouin zone centre induced by
hydrostatic pressure-induced changes in the lattice potential. In the elastic continuum model
at the long-wavelength limit, a general relationship expresses the acoustic-mode Grüneisen
parametersγp(N ), wherep denotes the branch andN is a unit vector in the propagation
direction, in terms of second- and third-order elastic constants (Cijklmn) [21]

γp(N ) = − 1

2ωp(N )χT
[1+ STaajk(2ωp(N )UjUk + CjkmunvNmNnUuUv)]. (4)

HereU is a unit vector along the polarization direction appropriate to the indexp, andχT

is the isothermal compressibility. Since these mode Grüneisen parameters relate only to
hydrostatic pressure, they can be determined from the elastic constants and their hydrostatic
pressure derivatives alone; for this purpose it is not necessary to consider contributions to
the third-order constants induced by application of uniaxial stress. Determination of the
mode Gr̈uneisen parameters can be achieved by means of the thermodynamic coefficients
BIJ (equation (3)). Thurston [19] provides the useful relationship

BIJ = −(S1CIJ1+ S2CIJ2+ S3CIJ3). (5)
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Combination of the third-order elastic constants and the second-order elastic compliances
in the mode Gr̈uneisen equation (4) leads to expressions for the Grüneisen parameters that
depend only upon the thermodynamic coefficientsBIJ . Expressions have been developed
here which apply specifically to orthorhombic crystals:

Hγ
T
p (N ) = −

1

2wχT
{1+ 2w[(ST11+ ST12+ ST13)U

2
1 + (ST12+ ST22+ ST23)U

2
2

+(ST13+ ST23+ ST33)U
2
3 ] − B11N

2
1U

2
1 − B22N

2
2U

2
2 − B33N

2
3U

2
3

−2B12N1N2U1U2− 2B13N1N3U1U3− 2B23N2N3U2U3

−B44(N2U3+N3U2)
2− B55(N1U3+N3U1)

2− B66(N1U2+N2U1)
2} (6)

where

w = C11N
2
1U

2
1 + C22N

2
2U

2
2 + C33N

2
3U

2
3 + C44(N2U3+N3U2)

2

+C55(N1U3+N3U1)
2+ C66(N1U2+N2U1)

2+ 2C12N1N2U1U2

+2C13N1N3U1U3+ 2C23N2N3U2U3

and

χT = ST11+ ST22+ ST33+ 2(ST12+ ST13+ ST23).

By using the values ofBIJ , given in table 4, the acoustic-mode Grüneisen parameters in
the long-wavelength limit have been calculated for the Cu0.696Zn0.128Al 0.176 alloy crystal.
To do this, the Christoffel equations have been solved to find the mode velocities (as the
eigenvalues) and thus the elastic stiffness for each propagation direction, defined byN ; the
polarization directionsU have been obtained as the eigenvectors. Results are plotted as a
function of mode propagation direction in figure 2. Usually the elastic constants and lattice
vibrational frequencies increase with pressure, so that the mode Grüneisen parameters are
positive. For the Cu0.696Zn0.128Al 0.176 alloy, although the longitudinal modes show normal
behaviour with the Gr̈uneisen parameter having positive values, the shear modes show
the instructive feature of being negative for many propagation directions. It is especially
relevant to the transition mechanism that there is a marked dip in a direction close to the
(111)[1̄21] mode because unusual behaviour for this mode has previously been reported
[13]. In particular, it has been found that the velocity of elastic waves has a pronounced
minimum for a wave propagated along the [111] direction with [12̄1] polarization vector.
Even more interesting is the observation that this mode suffers a relatively large temperature
decrease (softening) on approaching the transition. These results suggest that the lattice
stability against this particular shear mode decreases as the sample approaches the MT.
During the transition the parent phase transforms to the martensite structure by means of
a diffusionless transformation. The lattice distortion suffered by the structure in order to
reach the low-temperature phase is basically described by a shear. The deformation can be
described using a matrix that relates the lattice vectors and planes in both phases [22]. It
should be noticed that the shear on the [111] plane and directed along the [12̄1] direction in
the martensite phase is obtained from the (110)[11̄0] shear in theβ-phase using the matrix
correspondence between phases. As indicated, this shear is responsible for the main lattice
distortion associated with the transition due to the low value of the elastic modulusC ′. The
mode also exhibits a partial softening with decreasing temperature nearMs . In addition, as
shown in the inset of figure 2, the acoustic mode Grüneisen parameter exhibits a marked
change (a maximum) for the (110)[11̄0] mode in theβ-phase. It has been found here that the
anharmonicity of this mode increases near the transition point. As a result, with changing
temperature a considerable variation of the Grüneisen parameter for the slow shear mode
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Figure 2. Long-wavelength longitudinal (solid line) and shear (dashed and dotted lines) acoustic-
mode Gr̈uneisen parameter of Cu–Zn–Al in the 18R martensite phase and in theβ-phase (inset),
as a function of mode propagation direction at 293 K. Data for theβ-phase were obtained from
[8] for Cu0.677Zn0.194Al 0.129 (Ms = 280 K).

propagating in the [111] direction of the martensitic phase occurs. For the bcc Cu–Zn–Al,
the soft shear modes associated withC ′ are much more anharmonic than the remaining
modes. In the differing theoretical approaches [5, 23] to the martensitic transition, this
anharmonicity has been recognized as being crucial in the mechanisms driving the system
towards the transition. The results presented here show that the martensitic structure inherits
some degree of this large anharmonicity. In this sense, the minimum in the slow shear branch
has to be related to the dynamical instability of the close-packed phase towards the ensuing
martensitic transition.

4. Conclusions

(1) The ultrasonic wave velocity for each of the 15 acoustic modes propagated in
monocrystalline Cu0.696Zn0.128Al 0.176 alloy increases linearly with increasing pressure. No
measurable hysteresis effects have been observed under pressure cycling up to 0.15 GPa.

(2) The results obtained for theCIJ at ambient pressure, when the structure is treated
as being 18R, are in good agreement with previous data obtained using other ultrasonic
techniques.

(3) The hydrostatic-pressure derivatives (∂CIJ /∂P )P=0 of elastic stiffness tensor
components have positive values: application of pressure does not induce acoustic-mode
softening.

(4) An expression has been derived which gives the acoustic-mode Grüneisen parameters
of crystals with orthorhombic symmetry. This expression has been used to calculate the
Grüneisen parameters of monocrystalline Cu0.696Zn0.128Al 0.176 alloy in the 18R structure.
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(5) The longitudinal mode Grüneisen parameters have positive values indicating a
normal non-linear acoustic behaviour.

(6) Some of the shear modes show unusual behaviour in having negative Grüneisen
parameters. A marked dip has been observed in the shear mode Grüneisen parameter for
the ultrasonic wave propagated along the [111] direction with [12̄1] polarization vector. A
comparison made with the Grüneisen parameters obtained for theβ-phase suggests that the
lattice instability against this particular shear mode increases as the sample approaches the
martensitic transition.
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[9] Gonz̀alez-Comas A and Mãnosa Ll 1996Phys. Rev.B 54 6007

[10] Nagasawa A, Kuwabara A, Morii Y, Fuchizaki K and Funahashi S 1992Mater. Trans. JIM33 203
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